Optimization of Forcing Parameters of Film Cooling Effectiveness
نویسندگان
چکیده
An optimization strategy is described that combines high-fidelity simulations with response surface construction, and is applied to pulsed film cooling for turbine blades. The response surface is constructed for the film cooling effectiveness as a function of duty cycle, in the range of DC between 0.05 and 1, and pulsation frequency St in the range of 0.2–2, using a pseudospectral projection method. The jet is fully modulated and the blowing ratio, when the jet is on, is 1.5 in all cases. Overall 73 direct numerical simulations (DNS) using spectral element method were performed to sample the film cooling effectiveness on a Clenshaw–Curtis grid in the design space. The geometry includes a 35-degree delivery tube and a plenum. It is observed that in the parameter space explored a global optimum exists, and in the present study, the best film cooling effectiveness is found at DC1⁄4 0.14 and St1⁄4 1.03. In the same range of DC and St, four other local optimums were found. The physical mechanisms leading to the forcing parameters of the global optimum are explored and ingestion of the crossflow into the delivery tube is observed to play an important role in this process. The gradient-based optimization algorithms are argued to be unsuitable for the current problem due to the nonconvexity of the objective function. [DOI: 10.1115/1.4025732]
منابع مشابه
Determining optimal distance from outlet of auxiliary forcing ventilation system to development of heading in underground mines
Auxiliary ventilation of the blind development heading in underground mines is one of the most challenging work activities amongst mining underground operations. The auxiliary forcing ventilation system provides positive pressure, cooling, controlling gas layering, and removing diesel fumes and dust levels from development headings, stopes, and services facilities. The effectiveness of the auxi...
متن کاملShape optimization of impingement and film cooling holes on a flat plate using a feedforward ANN and GA
Numerical simulations of a three-dimensional model of impingement and film cooling on a flat plate are presented and validated with the available experimental data. Four different turbulence models were utilized for simulation, in which SST had the highest precision, resulting in less than 4% maximum error in temperature estimation. A simplified geometry with periodic boundary conditions is de...
متن کاملNumerical Simulation Of the Componend Angles Effects On Adiabatic Film Cooling Effectiveness
Abstract Film Cooling Adiabatic Effectiveness on a Profile of a Gas Turbine blade that Using Holes with 45 Degree Combined Angles to the Flow Direction and Radial Along the Attack Edge as well as 25 Degree Angles to the Flow Direction and Surface Area of the Attack Edge Area and 35 degrees relative to the outlet hole suefaces along stagnation line, Under a specified blowing ratios, using the Re...
متن کاملAn Innovation in Film Cooling of the Gas Turbine Blades Applying an Upstream Jet
A new design concept is introduced to control the near-wall integration between the hot-gas boundary layer and the cooling jets in order to enhance the adiabatic film cooling effectiveness of the gas turbine blades. In this new approach, another film cooling port, having a very low blowing ratio, which prevents formation of the counter-rotating vortex pare, is applied just upstream of the main ...
متن کاملExperimental Investigation into the Hydrodynamics Effects of Slot Film Cooling on a Cylindrical Model
An experimental study of hydrodynamics of film cooling is performed by using a single longitudinal slot on a cylindrical model simulated to the leading edge of the gas turbine blade. The model is set up into the test section of an open-circuit induced flow wind tunnel which provides the main flow. The injected air, as a secondary film flow, produced from a high pressure compressor is considered...
متن کامل